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STABILITY OF RELATIVE MOTION OF PHASES IN TWO-PHASE FLOWS 

O. V. Voinov and A. G. Petrov UDC 532.529 

The stability of homogeneous states of a two-phase medium in relation to small dis- 
turbances (the problem of the correctness of the Cauchy problem for equations of two-phase 
media) is examined. We show that a consideration of the effect of particle (bubble) dif- 
fusion caused by relative motion of the phases is of fundamental importance. The pressure 
in the disperse phase is a subsidiary factor. The critical stability loss curve is ob- 
tained. 

The problem of stability of two-phase media has been examined in many papers [i-5]. 
Existing theories predict a short-wave instability of sedimenting suspensions, fluidized 
beds, and layers of liquid with bubbles. This instability should lead to the rapid appear- 
ance of inhomogeneities within the medium and to the practical unattainability of the homo- 
geneous state. Contradictory to theory, however, manifestly stable states are obtained in 
experiments [4]. Stability of a liquid with bubbles has been obtained only in [6, 7]. In 
[6] stability was secured by the action of electrical forces. In the problem of thermo- 
capillary motion in a gas--liquld mixture stability in the short-wave region is obtained by 
bubble diffusion [7], 

i. Equations and Method of Solution 

The equations for the change of momentum and conservation of mass of a two-phase medium 
have the form [i] 

e p d v / d t =  e p g - - A p - - d i v P ~  - - cF ,  p sdu /d t=  p~g-- ( t~)div  P8 + F ;  (1 .1)  

O c / O t + d i v  cu = O, O e / O t + d i v  ev = O, c + e  = 1, (1.2) 

where P, e, v and Pc, c, u are the densities, volume concentrations, and densities, re- 
spectively, of the carrier and disperse phases; g is the acceleration of gravity. The force 
of phase interaction F depends, in particular, on the relative velocity of the phases w = 
u --v. The dispersed particles are assumed to be spheres of the same radius R. 

At low Reynolds numbers (Re = wE/9) the force of phase interaction, with due allowance 
for particle diffusion [8], has the form 

F =--Pg'+ F*, F* = F:+F~, (1.3) 

F~ --  ~G �9 ~ OOWc-iDvc, B2w, Fa= R~ Ow 

where pg' is the effective repulsive force, g '  = g -  dv/dt; F~ is the viscous resistance 
force; F~ is the small contribution due to diffusion; G is a dimensionless number; D is the 
diffusion tensor; 

D u  = Rlwl([~6il  + ~- /~)wiw/w~). (1.4) 

The particle pressure in the medium is given by the tensor 

(Ps)u = O ~ w ~ S ~ 6 u + P ~ ( S - - S ~ ) w ~ w i  �9 (1.5) 

At finite Re the coefficient G in (1.3) depends on Re and is connected with the drag 
coefficient: C W = G/Re. In this case it is essential to take into account the added-mass 
effect, which, following [i], we write in model form 

Fm = ( i /2)p(dv/dt  - -  du/dt). (1 .6)  

The f l u c t u a t i o n s  of  the  a c c e l e r a t i o n  of  the  l i q u i d  must a l so  be taken i n to  accoun t :  
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and the force F will then take the form 

F = - - p g ' T F o ~  l + F ~ @ d i v E ,  ( 1 . 8 )  
* * -I FI = OFo/OU,l,c (DVc)~. 

The recurrent subscripts in (1.8) mean summation. The dimensionless quantities G, f, S, 
and o, contained in Eqs. (1.3)-(1.8), in the general case depend on e, Re, and Fr. The 
Froude number Fr = w/R/~g. 

At the small Fr limit the tensor D is nonzero, and the contributions of the pressure 
Ps (1.5) and E (1.7) to the equations are negligible: 

D~0, Ps = 0, �9 = 0 when Fr = 0. (1.9) 

At the large Fr limit, which is possible when Os >> P, the contributions of the pressure 
Ps, Z, and the diffusion tensor to the equations tend to zero [8]: 

S, E ~ 1/Fr  2, / - -~  l / F r  when F r - - + o e .  (I.I0) 

This can be attributed to the reduction of random motions when Fr >> i. 

We note that at low Re (<<i) in a rarefied system (c << i) S~c 5/a and f~l in order of 
magnitude. When Re << i, X and Fm can always be neglected in the expression for the force 
(1.8), and (1.3) will be valid. 

The problem consists in determination of the stability of the homogeneous solution of 
Eqs. (i.i) with the pressure in the particle medium given by (1.5) and the interphase force 
given by (1.3) or (1.8): 

c = l - - e  = cons t ,  v = - - w  = c o n s t  e, u ~ O, p = - - ( e p + c p s ) g z .  ( 1 . 1 1 )  

Here z is the coordinate in the direction of gravitational acceleration e. The velocity w in 
the homogeneous state is given by the formulas 

Gw = - -  (9~ - -  P)gB2/M, C w l w l w  = ( 9 J P - -  t )  g R .  ( 1 . 1 2 )  

As a result of this, the Froude number is given by 

Fr~ = I (Ps/9 - -  1) (Be/G) I = f Ps/9 - -  1 I C~ ~. ( 1 . 1 3 )  

When Re >> i the drag coefficient Cw depends weakly on Re and, hence, as (1.13) shows, 
it is convenient to introduce another dimensionless parameter (X = Ps/~) instead of Fr. 

A method of solving the problem of instability of the homogeneous state (i.ii) can be 
devised by taking into account the asymptotic sense of Eqs. (i.i), (1.5), (1.3), or (1.8), 
based on the existence of two small parameters: 

= (B/wT)Fr 2 << 1, ~ = (R/L) Fr 2 << t .  (1.14) 

These inequalities are not strong restrictions, since the continuous-medium approach 
is suitable only for fairly large scale lengths L >> R and time T >> R/w. Hence, the sta- 
bility problem can be solved by an iteration method. The equations of the homogeneous 
state (1.12) will be the main approximation from which, in particular, we can obtain the 
main approximation of the small-disturbance equations for small ~ and B. Gradient terms 
will appear in this equation as small corrections to the next approximation. 

2. Concentration Waves at Low Re and Fr 

If Fr << i, then, in view of (1.14), the difference in the phase accelerations is 
negligible ( dv/dt.~du/dt)., and the contribution of disturbances of the phase accelerations 
can be neglected in the small-disturbance equations. Taking (1.9) into account and also the 
fact that when Re << i, Fr << i, G(e, Re, Fr) ~ G(e, 0, 0), then from (1.3) and (I.i) we 
obtain (Ps --P)g--G(w+ cJDVc) = O, from which for small disturbances 

we'O ln  G / O e + w ' + c - l D V c  ' = O. ( 2 . 1 )  

Here and henceforth a dash denotes small disturbances of the respective parameters. Multi- 
plying the continuity equations (1.2) by --E and c, respectively, and then adding them, we 
obtain for small disturbances 
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O e ' / O t  - -  cwve' -- ec div w' ---- O. (2.2) 

Determining div w' from (2.1) and substituting in (2.2) we obtain the small-disturbance 
equation 

O e ' / O t  - -  c0(wV)e' : • + x O i e ' / O z  2, 0 : ~1 - -  ( e / G ) d G / d e ,  (2.3) 

• - -  e R I w l / ,  •  = ~ R l w l / L ,  

where A• is the Laplace operator in a plane orthogonal to the undisturbed value of the 
relative velocity w; the coefficients f and /• depend on c; u = sD (D is the diffusion co- 
efficient); 8 ~ 5, in view of the known empirical relation [8, 9]. 

Equation (2.3) is the equation of convective diffusion of disturbances of particle con- 
centration with allowance for anisotropy of the diffusion coefficient. The main feature 
is the left-hand side of the equation, which describes the motion of disturbances with 
velocity--c0w. 

Disturbances of length of the order of ~ in traversing a distance ~ are spread over 
a small value Az ~ V~. The concentration disturbance is appreciably spread at character- 
istic distances L % %2/R. It is obvious that on the large-scale L only short-wave dis- 
turbances of length I < ~manage to relax. 

It is apparent that at small Fr a two-phase medium is stable. This conclusion is con- 
sistent with experiments on the sedimentation of suspensions of small particles in liquids 
[9], the results of which correspond to small values of Fr 2 (~10-a-10-4). In these ex- 
periments only stable states of the medium were actually observed. 

. Stability of Two-Phase Media at Finite Fr and Re 

We consider the one-dimensional problem of the dynamics of small disturbances of the 
homogeneous state (i.ii). Linearization of Eqs. (i.i) and (1.8) gives 

R' ROw -7-J-Ofz--~9s + -~" (3.1) 

, 3 /Or' Ov'~ , t o 8 [ ( o ~ _ p , S ) w ~ ] T ~ O [ ~ _ w ~ _ ; } ,  
T c Oz 

a~ o~,,' ~ ( a w )  = ~ u~ we' 

The l e f t - h a n d  s i d e  of  (3.1) i s  the main approximat ion  f o r  smal l  parameters  ~ and 8 (1 .14) .  
In this approximation ~(Gw) = 0, from which it follows that 

w ' = ~ O - - l w s ' , O = l - - e ~  ( ~ )  - t . 0 s  (3.2) 

From (3.2) we f i n d  3w'/3z and s u b s t i t u t e  i t  in  (2 .2 ) .  Then, in  the  main approximat ion  we 
obtain the equation 

O s ' / O t  - -  c O w O g / O z  = 0. (3.3) 

To obtain Eq. (3.3) in the next approximation for small ~ and 8 we must express 3w'/~z by 
e' in this approximation. For this we express u' and v' in (3.1) in terms of e' and w' with 
the aid of the integral for the one-dimensional continuity equations: u' = e'w, v' = 
-w' + e'w. The disturbance w' can be eliminated from the right-hand side of (3.1) after 
expressing w' in terms of e' and its derivatives with the aid of (3.2). The derivative of 
E' with respect to time can be expressed as a derivative with respect to z by means of 
(3.3). Thus, from (3.1) we find, with accuracy to terms of the second order of smallness 
in ~ and 8: 

Ow O - -  I 0 8 '  ~ 028 ' 

o-T = ---d-- w ~ + u oT" 

Substituting this expression in (2.2) we obtain an equally a c c u r a t e  equation for e' 

0e' ' 0~-e ' (3.4) 

Ot o z  Oz ~ ' 
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[ Fr~ipo i a (c-O- S* ] z eRIw I / ii - ~ ~+ + H ~  H,,) , 

a:G(OGw/Ou;)- l '  S * = (  lw~ o~~ ~' O--I  o ) [ s w  Ow w e ( S - i a ) ] ,  

H = - - - P  - ~ ( l - - c 0 )  e , H~ O c to, to, f8 [ ( I  - -  cO) ~ + c~O~l. 

(3.5) 

The term f in (3.5) is due to particle diffusion with diffusion tensor D % RIwlf; the term 
containing c202 is due to the inertial force psdu/dt; S* is the particle pressure Ps and the 
tensor E in the force F. Finally, the terms in (3.5) proportional to H and H m are due re- 
spectively to the effective repulsive force -- 9g'and the force Fm representing the added- 
mass effect. 

When n>0 the Cauchy problem for Eq. (3.5) is correct and the system is stable. The 
dynamics of the disturbances is similar to the case analyzed in Sec. 2. If • the sys- 
tem is unstable. The Cauchy problem is incorrect. Disturbances with the smallest wave- 
length grow most rapidly. For any macroscopic scale L we can indicate a length X << L (but 
I >> R) such that disturbances of scale X can increase greatly in amplitude before they are 
removed from the system at rate-~ew. 

It is significant that instability at Ps >> P, as (3.5) shows, can be appreciable only 
in fairly concentrated systems, since the increment is proportional to c 2. 

From the form of coefficient • in (3.5) we can draw the following important conclu- 
sions. 

i. Stability can be secured only by particle diffusion, the presence of the disperse 
phase pressure Ps, and fluctuations of the effective repulsive force E. The diffusion 
effect always promotes stability (f > 0), whereas the pressure and fluctuations of the un- 
steady interaction force may lead also to instability, since the sign of S* in (3.5) may 
be different. We can have the situation in which these effects stabilize the system (S* < 
0) in one region of concentrations, and promote instability (S* > 0) in another region. 

2. The role of the disperse phase pressure is insignificant when Re << 1 and the phase 
densities are comparable (Ps ~ P). The stability of the system (z>0) in this case can be 
attributed entirely to the particle diffusion mechanism. 

3. The system is always unstable at high Fr (>>i), since, in correspondence with 
(i.i0), the coefficients f and S* § O, and Fr + ~. When Fr + ~ the density ratioPs/p always 
approaches infinity. 

4. There is a critical stability loss curve Fr = Fr~ e) or Ps/P = X~ Re, e), since 
the coefficient • (3.5) is a function of Fr, Re, and e, or the equivalent variables Ps/P, 
Re, and E. When Fr > Fr o or Ps/P > X ~ the system is unstable. 

5. Stability loss occurs at finite values of Fr o (~i). In this case the accuracy of 
the method proposed for two-phase media in [8] is equal to that of the continuous-medium 
method, as conditions (1.14) show. In the region Fr § =, where the method of [8] becomes in- 
accurate, there are no stable homogeneous states of two-phase media. Destruction of homo- 
geneous states when Fr >> 1 occurs in the short-wave region in a small time ~ ~ (R/w)" 
(ecOFr) -2, if Ec8 Fr < l, and in time �9 ~ R/w, if the opposite is the case. 

4. Limits of Small and Large Re 

When Re << 1 the coefficient ~ in (3.4) is 

• = ( f -  Fr~(ce0 2 + S*))sR[w[, Fr 2 = (Re/G)pjp, (4 .1 )  

where  S* depends  o n l y  on t he  d i s p e r s e  phase  p r e s s u r e .  The te rm w i t h  Fr  2 i n  (4 .1 )  i s  s i g -  
n i f i c a n t  o n l y  when Ps >> P. The q u a n t i t i e s  f and S* depend o n l y  on Fr and E and ,  h e n c e ,  t h e  
condition ~ ~0 determines the stability curve 

Fr = Fr~ (4.2) 

In view of (1.9) and (i.i0), when Fr << 1 the medium is stable, and when Fr >> 1 it is 
unstable. We must point out that in the considered limiting case the stability boundary 
is independent of the density ratio Ps/P. 
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In formula (3.5) at large Re (>>i) the coefficient a = 2 and the coefficients S, o, 
and e depend very weakly on Re. Hence, there must be a limiting stability curve 

Fr = Fr~ or ~s/P = %~ when He>>1.  (4 .3 )  

The f i r s t  f o r m u l a  i n  (4 .3 )  has  the  same form as ( 4 , 2 ) ,  and the  second  way of  w r i t i n g  
i t  i s  s u i t a b l e  o n l y  a t  l a r g e  Re. 

The d i s p e r s e  phase  p r e s s u r e  Ps p r o b a b l y  p l a y s  a minor  r o l e  i n  c o m p a r i s o n  w i t h  d i f -  
f u s i o n  not only when Re << i, but also when Re >> i. This is indicated by the results of 
experiments [I0] on homogeneous fluidization by a liquid at Re ~ i00. Treatment of these 
data shows that in the range E = 0.53-0.7 the coefficients in the formula for the pressure 
Ps (1.5) are very small: S ~- 0.01, S• 0.005. The coefficients ~ and ~• in the tensor 
~, contained in F, in this case have values that are probably an order greater than S and 
Sz. 

5. Comparison of Theory and Experiment 

The results obtained enable us to explain the essential features of sedimentation of 
suspensions, fluidized beds, and layers of liquids with bubbles. A fluidized bed is formed 
if the velocity of an ascending flow of gas or liquid through a stationary layer of solid 
particles is sufficiently high. When the velocity of the liquid increases the bed expands. 

In experiments and in practice [4] homogeneous and highly inhomogeneous states of 
fluidized beds are observed. The characteristic feature of the latter state is that, de- 
spite the most uniform and homogeneous flow of gas through the bottom of the bed (e.g., 
through a fine-pored metal plate [4]), large-scale inhomogeneities are spontaneously pro- 
duced within the layer. An inhomogeneous state of a fluidized bed in which there are great 
irregularities of particle concentration can be interpreted as the result of development of 
instability of the homogeneous state. 

The theory of stability of relative motion of the phase provides the first explanation 
of the following experimentalmanifestations of the existence of homogeneous and inhomo- 
geneous states of fluidized beds. 

i. At finite Re (91) for solid particles suspended in gas only inhomogeneous states 
occur and the stable homogeneous state is not observed [4]. The theoretical explanation 
of this is that the instability condition is fulfilled, since at high particle density 
Fr >> i. 

2. At finite Re (~i) the homogeneous state of a fluidized bed is observed only when 
the phase densities are close (Ps ~ P) [4, i0]. 

3. An increase in particle density or reduction of the viscosity of the carrier medium 
(Re < i) always promotes inhomogeneity of fluidization. In particular, in the case of 
fluidization by liquids the homogeneous state is observed much more frequently than in the 
case of fluidization by gases [4]. The theoretical explanation of this is that with in- 
crease in density p or reduction of viscosity Fr increases and approaches the critical value 
Fr ~ . 

4. An increase in radius R of the particles suspended in the flow leads to the appear- 
ance of inhomogeneities in experiments [4]. This can also be attributed to an increase in 
Fr. 

5. Many experiments (see [4, ii], for instance), beginning with those in [12], have 
shown that at large values of the parameter j2/(gd) >> 1 (j is the velocity of gas through 
unit cross section of the bed, d is the particle diameter) an exceptionally inhomogeneous 
state of a fluidized bed is formed. Hitherto there has been no explanation of this experi- 
mental fact. Attempts to explain it by introducing incorrect ideas regarding the buoying 
up of bubbles of radius of the same order as that of the particles [Ii] were unsatisfactory. 

The correct explanation of this empirical fact is that at large Fr (>>i) [Fr 2 = 
2(1 -- c) -2 j2/(gd)] a heterogeneous continuous medium becomes unstable in the short-wave 
region and ceases to be macroscopically homogeneous. 

In experimental investigations [13-16] the critical parameters of the transition of 
a fluidized bed of solid particles in a gas flow from the homogeneous to the inhomogeneous 
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state were measured. This transition occurred at a certaingas flow velocity, when 
splashes were observed relatively suddenly on the surface of the bed and the height of the 
bed started to decrease rapidly with increase in velocity. 

An analysis of the experimental data of [13-16] from the standpoint of the above- 
developed stability theory is shown in Fig. i. The experimental results are represented in 
coordinates Fr and e = 1 -- c. Points 1 and 2 correspond to [13], and points 3-5 to [14-16]. 
It is apparent that the experimental results correspond well with the existence of the 
single stability curve (4.2). All the presented results, except those of [16], correspond 
to particles of a narrow fraction. A considerable number of the points relate to signifi- 
cantly nonspherical particles, which leads to some spread of the points. The experimental 
data of [16] lie within the stability limits and, hence, points 5 in Fig. I lie within the 
region of stable states. 

It should be noted that experiments with broad fractions lead to differing stability 
curves Fr~ since the stability naturally depends on the particle size distribution. The 
characteristic values of Fr o at which stability is lost are of the order of i in all the 
experiments. 

Figure 1 also shows the results of treating suspension sedimentation data [9]. Line F 
corresponds to sedimentation of glass spheres of diameter 0.01 cm in water, and line E to 
the sedimentation of particles of mean diameter 0.0096 cm and density p s = 1.88 g/cm 3 in a 
liquid of density P ~ i g/cm 3 and viscosity ~ ~ 0.01 g/cm'sec. It is apparent that stable 
sedimentation of the suspensions occurs in the region Fr < Fr o in complete agreement with 
the theory. 

For a liquid with suspended bubbles the theory indicates the possibility of stable 
homogeneous states, since Fr is always 41. At low Re a layer of liquid with bubbles is 
always stable, as follows from points 2 and 3. At finite Re a liquid with bubbles corre- 
sponds to the most stable situation Ps/P = 0. It is known that even when Ps > P stable 
homogeneous states exist [4, i0]. Homogeneous (on the average) states of concentrated sys- 
tems of suspended bubbles have been observed in experiments [17, 18]. 

We note in conclusion that the existence of a two-phase medium as a homogeneous con- 
tinuous medium is ensured by random motions due to hydrodynamic interaction. The entire 
stability theory is contained within the framework of applicability of the method of repre- 
senting a two-phase medium by consideration of random motions [8]. 
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PROBLEM OF FIRING PLANAR NOZZLES IN SHOCK TUBES 

A. B. Briman and V. L. Grigorenko UDC 533.6 

Numerous recent investigations are concerned with studying the propagation of shock 
waves in channels with variable cross sections. There is no rigorous description of all 
details of such flow, so that each investigation is carried out based on a chosen simplified 
model. In particular, in order to analyze processes related to firing nozzles in shock 
tubes, flow models taking into account the passage of the primary shock wave along the 
nozzle, the contact surface, the secondary shock wave, and nonstationary rarefaction waves 
are widely used [i]. Such models permit determining the trajectory of the shock waves, 
which in many cases [1-4] coincide with the experimentally observed trajectories, although 
the viscosity of the gas and the two-dimensional nature of the flow were not taken into 
account in the calculations. The effects indicated are manifested most strongly in the 
supersonic part of the nozzle, near its walls, when the secondary shock wave interacts with 
the boundary layer, causing separation of the flow [i, 5, 6]. At the present time, there is 
no clear idea of how the flow separation affects the flow parameters and the continuance of 
firing, measured through the lateral walls of the planar nozzle. The possibilities of com- 
putational methods are limited due to the absence of criteria for separation in a nonsta- 
tionary flow and spread of separation data in stationary flows [i]. Also, the relation be- 
tween the flow separation from diverging and from parallel walls of the nozzle is not clear. 
We note that when the flow is visualized optically [i, 5], the flow separation from the 
diverging walls is clearly manifested, but the effects are not observed on the parallel walls 
due to the small optical thickness of the imhomogeneities. At the same time, the schemes 
for measuring the optical amplification are more sensitive to the effects on the parallel 
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